
panoptes Documentation
Release 1.0-SNAPSHOT

Paul Vauterin, Ben Jeffery, Alistair Miles

July 31, 2015

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Installation and deployment guide . 4
1.3 Loading data . 7
1.4 Source files structure . 29
1.5 Data import settings . 32

2 License 45

i

ii

panoptes Documentation, Release 1.0-SNAPSHOT

Panoptes is a web application for exploration and visualisation of data. Many of the features, such as querying and
browsing tables, are generic and can be used with any kind of data. There are also some specialised features for
genomic and geospatial data.

Caution: Panoptes is still in an early stage of development. It should currently be considered as a prototype, unfit
for production deployments.

We welcome early adopters, however please bear in mind that the design and configuration of the web application
are still in flux and may change substantially. As our current focus is on developing the code, we can only offer
limited support. For more information about the project please send an email to the public mailing list <panoptes-
dev@googlegroups.com>.

• Source code: https://github.com/cggh/panoptes

• Documentation: http://panoptes.readthedocs.org

• Mailing list: https://groups.google.com/forum/#!forum/panoptes-dev

Contents 1

mailto:panoptes-dev@googlegroups.com
mailto:panoptes-dev@googlegroups.com
https://github.com/cggh/panoptes
http://panoptes.readthedocs.org
https://groups.google.com/forum/#!forum/panoptes-dev

panoptes Documentation, Release 1.0-SNAPSHOT

2 Contents

CHAPTER 1

Contents

1.1 Introduction

Panoptes is a web application for exploration and visualisation of data. It was created by the CGGH software devel-
opment team to assist with the visualisation of various types of data created by the project. It has a strong focus on
population genetics data, but most of its tools are generic and can be used on a wide range of data.

1.1.1 List of basic features

Table viewer A cornerstone element of Panoptes is a paged table viewer that can serve tables of unlimited size.

Query builder Panoptes contains a graphical and interactive query builder that allows the user to create advanced
queries in a simple, intuitive way. This query tool automatically hooks up to any other component of the
software, such as the table viewer or the charting tools.

Charts The software contains a variety of chart visualisations, such as histograms, bar graphs, scatter plots, etc... .
These charts are highly interactive, including colour overlays, tool tips, popups, and selection tools.

Geospatial and geotemporal visualisations A specific subset of charts deals with interactive visualisation of data
points on a map, potentially combined with a time line.

Genome browser Data points that correspond to positions or regions on a genome (such as SNPs or other variants)
can be visualised on a genome browser. Numerical properties can be shown as graphics tracks in that browser.
An powerful feature of Panoptes is the concept of multiresolution data summarisation, which allows the browser
to show properties over the genome in real-time, regardless the zoom level or genome size.

Genotype browser For a set of sequences, genotypes for a set of variants can be visualised as a matrix of variations
in the genome browser. Both calls and allele depths are supported, with the ability to view other properties such
as quality scores.

Visual Analytics Panoptes implements some basic concepts of Visual Analytics, offering near-realtime visualisations
with a high level of interactivity, and extensive selection methods that can be used to drill down in the dataset.

Data sharing One of the fundamental design goals of the application is to serve as a data sharing tool and a collabo-
rative platform between a group of scientists working on a common dataset. As an example, every visualisation
that can be created in Panoptes, can be turned into a permanent link, ready to be shared by other users.

Data import Panoptes offers an easy and flexible data import path. It can grab source data from simple, TAB-
delimited source files, augmented by settings files containing metadata that instruct the software how to treat
these data.

3

http://www.cggh.org/

panoptes Documentation, Release 1.0-SNAPSHOT

1.2 Installation and deployment guide

1.2.1 Deployment on a new Ubuntu image

For testing purposes, a slightly easier way to obtain a running instance of Panoptes is to do a full deployment on a
fresh a fresh Ubuntu 14.04.1 LTS image, e.g. on an EC2 virtual machine. A script is provided that performs a fully
automatic installation, including

• Installation of all dependencies

• Deployment and configuration of MySQL

• Deployment and configuration of Apache2

Caution: This deployment option will aggressively override packages and settings on the machine. It is only
intended to be used on a fresh image.

The following steps will create a fully working Panoptes instance on an Ubuntu 14.04.1 LTS image:

cd /
sudo wget https://raw.github.com/cggh/panoptes/master/scripts/deploy_default/deployfull.sh
sudo chmod +x deployfull.sh
sudo ./deployfull.sh

The source data folder is set to /panoptes/sourcedata. The application is accessible from [ServerAddress]/index.html.

1.2.2 Short debain/ubuntu guide for the temporarly challenged

sudo apt-get install mysql-server-5.6 mysql-client-5.6 git gcc gfortran python-dev python-virtualenv libblas-dev liblapack-dev cython libmysqlclient-dev libhdf5-serial-dev
wget https://github.com/cggh/panoptes/archive/master.zip
unzip master.zip
cd panoptes-master
cp config.py.example config.py
nano config.py #EDIT DB CREDENTIALS AND FILE PATHS
./scripts/build.sh
./scripts/run.sh

1.2.3 Basic installation

Download & dependencies

Download the code from the GitHub repository:

wget https://github.com/cggh/panoptes/archive/master.zip
unzip master.zip
cd panoptes-master

Panoptes needs a running MySQL version 5.6 or later with permission to create and remove databases. The MySQL
client tools also have to be installed on the machine running Panoptes. Install MySQL if you don’t have it E.g. for
debian-based Linuxes:

sudo apt-get install mysql-server-5.6 mysql-client-5.6

4 Chapter 1. Contents

panoptes Documentation, Release 1.0-SNAPSHOT

Caution: Note that if there are tables from other apps that name-collide with Panoptes dataset names then there
will be data loss. Use a separate MySQL install or set your MySQL permissions carefully!

You will need to install the following packages (or equivalent) before Panoptes can be installed. E.g. for debian-based
Linuxes:

sudo apt-get install git gcc gfortran python-dev python-virtualenv libblas-dev liblapack-dev cython libmysqlclient-dev libhdf5-serial-dev

Build

In the directory where the code was unzipped, copy ‘config.py.example’ to ‘config.py’. Edit the file and specify the
following components:

• MySQL setup (DBSRV, DBUSER, DBPASS).

• A directory Panoptes can use for storing files (BASEDIR, see further).

• A directory that will contain the source data files (SOURCEDATADIR, see further)

• Title of the deployment (TITLE)

• Extra JS for utilities and tracking such as rollbar etc. Note that google analytics can be set on a dataset level.
(EXTRA_HEAD, EXTRA_TAIL)

The login credentials used need to have sufficient privileges to perform alterations such as database creation. .. note:

Changes in 'config.py' are fixed on build, so you will need to rebuild if they change.

To build run:

./scripts/build.sh

To build for development:

./scripts/build.sh DEV

to create a panoptes installation in ‘build’. Note that this deletes any existing build. This build copies the different
components of the application, and merges them into a single file structure. Note that, during this process, a copy
of config.py is put in the build folder. This copy is used by the actual server process. This will attempt to install the
needed python packages and link Panoptes into the DQXServer framework which serves the app.

Server data file structure

Panoptes uses two file directories, and the location of both has to be specified in config.py (example: config.py.sample).

BASEDIR: This is the root directory for storing file-based server data. It should contain subdirectories “Summary-
Tracks”, “Uploads” and “temp”. All should have write privileges for the user that runs the server.

SOURCEDATADIR: This directory contains the file-bases data sources that are used to import into the Panoptes
datasets.

Note: Both paths have to be specified as absolute, starting from /. Do not use relative paths here.

See section Loading data for more information on how to populate the Panoptes instance with data.

1.2. Installation and deployment guide 5

https://github.com/cggh/DQXServer/blob/master/config.py.sample#L38

panoptes Documentation, Release 1.0-SNAPSHOT

Simple Server

The simplest way to run Panoptes is using:

./scripts/run.sh

by default, this serves Panoptes on http://localhost:8000/index.html using gunicorn. To run on your external network
interface use (with the port you desire):

./scripts/run.sh 0.0.0.0:8000

Note that you will need internet access even if you run Panoptes locally due to google-hosted mapping tools.

Deployment on Apache2 (OPTIONAL)

Note: This section describes a deployment strategy where the static files (html, css, js) are also served through the
WSGI interface. This allows one to protect the application using a CAS Single Sign-On service.

Install the Apache2 wsgi dependency libapache2-mod-wsgi.

Create a symbolic link in /var/www/ to [PanoptesInstallationPath]/build/DQXServer/wsgi_server.py:

ln -s [PanoptesInstallationPath]/build/DQXServer/wsgi_server.py /var/www/.

The build script uses a virtualenv for the installation of Python dependencies, and the Apache2 WSGI configuration
has to be instructed to use that virtualenv. An example VirtualHost config would be (note that the tokens need to be
replaced by their proper values):

<VirtualHost *:80>
DocumentRoot /var/www
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
WSGIDaemonProcess Panoptes processes=2 threads=25 python-path=[PanoptesInstallationPath]/build/panoptes_virtualenv/lib/python2.7/site-packages:[PanoptesInstallationPath]/build/DQXServer
WSGIProcessGroup Panoptes
WSGIScriptAlias / /var/www/wsgi_server.py

</VirtualHost>

In this configuration, the app is served from:

[ServerName]:80/

1.2.4 Authorization

Panoptes contains a simple authorization mechanism that can be used to grant or deny certain privileges on datasets.
There are three levels of privileges:

• Read: View the data in a dataset.

• Edit: Add custom data properties to a workspace.

• Manage: All actions, including loading the dataset from the file source.

The authorization mechanism interacts with authentication systems implemented at the web server level, by reading
the REMOTE_USER environment variable.

6 Chapter 1. Contents

http://localhost:8000/index.html

panoptes Documentation, Release 1.0-SNAPSHOT

Specifically, Panoptes can integrate with a CAS Single Sign-On service. To enable this, specify the CAS service url in
the CAS_SERVICE variable in config.py. In this case, authentication can also be based on user groups.

The file PanoptesAuthDb (https://raw2.github.com/cggh/panoptes/master/servermodule/panoptesserver/PanoptesAuthDb)
is used to link user authentication information to privileges on specific datasets. The default installation grants all
rights to everybody.

1.3 Loading data

Panoptes imports datasets into the server database from source data, consisting in a set of simple, structured files
present on the server. Importing a dataset from source data does not happen automatically, and has to be initiated by
the user (see Importing datasets). This import action creates all necessary components to serve the dataset in Panoptes
(relational database, preprocessed files, etc...)

See also:

1.3.1 Panoptes data concepts

The data served by Panoptes is structured according to a number of central concepts:

Dataset

A complete set of data that can be loaded and visualized in a single Panoptes session. A dataset can consist of:

• One or more workpaces.

• A set of data tables.

• A reference genome, including annotation.

• A set of summary values, defined on the reference genome.

• 2D data table.

• Various settings that define the structure of these components, and the interactions between them.

See also:

• Creating a new dataset

• Dataset source files

Workspace

Each dataset has one or more workspaces associated. The user always opens a specific workspace, and can add custom
data to the dataset that is only visible in the context of this workspace.

In addition certain entities are specific to an individual workspace:

• Stored queries

• Subsets

See also:

• Add a new workspace to a dataset

• Workspace source files

1.3. Loading data 7

https://raw2.github.com/cggh/panoptes/master/servermodule/panoptesserver/PanoptesAuthDb

panoptes Documentation, Release 1.0-SNAPSHOT

Data table

A data table is a table of records, belonging to a data set, that corresponds to a type of information and be queried and
visualized in Panoptes. A record in a data table is called a data item. Each data table has a number of columns called
properties.

Optionally, a data table can be defines as containing a set of genomic positions, or genomic regions.

Examples: samples table and variants table .

See also:

• Add a new data table to a dataset

• Data table source files

Data item

A data item is an individual record in a data table. It has a number of properties, defined by columns in the data table.
For example, it may correspond to an individual sample, or an individual variant.

On a running Panoptes instance, it is possible to format a url that creates a deep link into a view showing information
about an individual data item:

[BaseUrl]?dataset=[DatasetId]&workspace=[WorkspaceId]&tableid=[TableId]&itemid=[DataItemId]

If the server only serves a single data set, the dataset token may be omitted. If the dataset contains only a single
workspace, the workspace token may be omitted.

Property

A property is a column in a data table. As such, it defines a property of a data item. Examples are collection dates
and geographical coordinates for samples. There are two types of properties:

Standard property: Provided in the dataset. These are visible in every workspace.

Custom property: Specified at the level of a workspace (see Custom data).

Reference genome

A dataset can have information that relates to a reference genome, such a genomic variants. In Panoptes, the reference
genome may include the following elements:

Reference sequence: Imported from a FASTA file, and displayed as colour codes in the genome browser.

Annotation: Imported from a GFF file, and displayed as an annotation track in the genome browser.

See also:

• Add reference genome annotation

• Add reference genome sequence

• Reference genome source files

8 Chapter 1. Contents

https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/samples/data
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/data

panoptes Documentation, Release 1.0-SNAPSHOT

Summary value

A summary value is a filterbanked property defined over the reference genome. There are three types:

Standard summary value Provided as a property of a data table.

Custom summary value Specified as a property at the level of a custom data source.

Data table - related: A type of summary value that has an instance for each data item in a data table. Example:
sequencing coverage info for all samples in a data table.

2D data table

A 2D data table is a matrix of data that combines two (1D) data tables, and provides information for each combination
of elements from both tables. One data table serves as the definition of the rows, the other as the definition of the
columns of the matrix. Several properties can be defined for each cell. These properties can be thought of as layers of
the matrix in a third dimension.

The typical use case is genotype data, information about the genomic variations found on a set of genomic sequences
(called samples), over a set of variants. Both the samples and the variants have to be present in the dataset as data
tables, with the 2D data table containing the genotypes linked to them by the RowDataTable and ColumnDataTable.
The variants data table should be defined as containing genomic positions (see also Data table settings).

The genotype data is visualised on the genome browser, with the samples as rows, and the variants as columns
displayed at the corresponding genomic positions. A number of properties can be stored and visualised for each
genotype, such as call, quality, and coverage.

Custom data

Panoptes allows the user to augment a data table, in the context of a specific workspace, with additional properties.

These extra properties will show up as additional columns for this data table in a Panoptes session that opens this
workspace.

See also:

• Add a custom data source to a workspace

• Custom data source files

1.3.2 Importing datasets

Importing a dataset source does not happen automatically, and has to be initiated by the user. After installation, a
number of sample dataset sources are copied into the source data folder, and are ready to be imported.

• Start the Panoptes app in a browser.

• In the intro screen, click on the hyperlink “Open admin page”. This creates a new tab in the browser, showing
the administration section of the app.

• The administration section shows the available source data file sets as a tree. Click on the cog wheel icon ()
on the left of the dataset you want to import (e.g. “Samples_and_Variants”). An Import dialog box appears.

• Check the option “Full import”.

• Click the button “Import”.

• This initiates the data import. A progress box is shown during this action.

1.3. Loading data 9

panoptes Documentation, Release 1.0-SNAPSHOT

• Upon completion, a new item appears in the list “Server calculations”. Clicking on this shows a log of the import
activities. If an error occurred, this can be useful for troubleshooting.

• Go back to the browser tab with the Panoptes intro screen, and reload the app by clicking the browser refresh
button to retrieve the updated dataset information.

• The imported dataset should appear in the list.

See also:

Import dialog box

The “Import file source data” dialog box is used to initiate import of a dataset, interpreting the source data (see Source
files structure), and creating the environment required for serving the dataset in Panoptes. This includes:

• Create the relational database containing tables for all data tables.

• Transform all necessary files such as GFF annotation data.

• If applicable, execute all filterbanking actions on genomic data.

• If applicable, transform genotyping data into a format suitable for serving.

In this dialog, one of the import types has to be chosen prior to activating the import:

Full import: This option executes a full import from scratch of the complete source data for the selected component.
If an entire dataset is imported, the relational database used for serving will be dropped and rebuilt. Note that,
for large datasets, this may take a long time to complete.

Update configuration only: This option does not import any data at all, but can be used to quickly update the settings
on the served dataset, based on changes in the definitions in the source data settings files (e.g. descriptive texts,
colours, etc...).

• NOTE: this option can only be used when a dataset was already imported earlier using the “Full import”
or “Top X preview” option.

• NOTE: some setting changes (e.g. filterbanking definitions) do require an actual data import.

Top 1K, 10K, ... preview: This option executes a full import of a portion of the source data for the selected com-
ponent. If an entire dataset is imported, the relational database used for serving will be dropped and rebuilt.
Use this option to test run import of a large dataset on a subset of the source data. In this way, a much quicker
turnaround can be achieved when debugging and tweaking the settings files. NOTE: if a top X import action is
performed on a dataset where a full import was already executed earlier, the data not present in the top subset
will be removed from the running dataset.

After selecting the appropriate import type, click the “Import” button to activate the import.

New source data can be added following two approaches:

1.3.3 Editing the source directory structure

The source data directory structure on the server can be directly manipulated: adding new directories, copying data
files and setting files, etc... These source data files are located in the directory [SOURCEDATADIR]/datasets
([SOURCEDATADIR] as specified in config.py, see config.py.sample).

Note: This is a more low-level approach, which works best for large data sets and experienced data administrators.

See also:

10 Chapter 1. Contents

https://github.com/cggh/DQXServer/blob/master/config.py.sample#L38

panoptes Documentation, Release 1.0-SNAPSHOT

Source files structure

Internally, Panoptes uses a combination of a set of MySQL databases and a file structure to serve the data. Data are
loaded into this system be launching an import action that reads the data from a source file location (specified by
SOURCEDATADIR in config.py, see also Server data file structure).

The formatting of the source data relies a few concepts:

• It is organised in a way that closely mimicks the basic concepts of the Panoptes data structures, using nested
folders to reflect the structure.

• In most cases, data are provided using simple, TAB-delimited files. Exceptions are made in those cases where
a widely accepted standard format is used for a specific type of information (e.g. GFF files for genome annota-
tions).

• YAML (http://www.yaml.org/about.html) structured files are used to provide the necessary metadata to interpret
and parse the data in the context of Panoptes. These metadata are provided in files called settings.

Caution: Many identifiers used in the source data structures (folder names, table column headers, etc..), are
directly mapped to identifiers in the MySQL database tables. Therefore, they should be formatted as standard
variable names (e.g. do not contain dashes, white spaces or other special characters, do not start with a number,
...)

Dataset source files

The config.SOURCEDATADIR folder should contain a folder datasets, serving as a root for all datasets being
served by the Panoptes instance.

In this folder, a subfolder should be present for each dataset. The folder name is used as the unique identifier of this
dataset. In the dataset folder, a yaml settings file should be present, specifying the displayed name of the dataset,
and an optional description (see General dataset settings).

See also:

• Dataset

• Source files structure

Reference genome source files

A dataset source folder may optionally contain a subfolder refgenome, describing the reference genome used. It
can contain the following files:

• chromosomes (required). A list of all chromosomes identifiers, and their lengths (in MB).

• annotation.gff (required). The annotation of the reference genome, in GFF format.

• refsequence.fa (optional). The reference genome sequence, as FASTA file.

• settings (required, yaml formatted). Various settings concerning the reference genome (see Reference
genome settings).

Summary values source files The refgenome folder may contain an optional subfolder summaryvalues. Each
subfolder in this folder represents a different (numerical) property defined over the genome that will be filter banked
and can be displayed in the genome browser. The folder name serves as the identifier of the summary value. Each
summary value folder should contain the following two files:

1.3. Loading data 11

http://www.yaml.org/about.html

panoptes Documentation, Release 1.0-SNAPSHOT

• values. A TAB-delimited file having three columns,and no header (example file):

– column 1: Chromosome identifier

– column 2: Position

– column 3: Value

• settings (yaml formatted). Contains the displayed name of the summary value, and further guidelines on
how to process the information (sample numeric file). (sample categorical).

See also:

• Reference genome

• Source files structure

Data table source files

In the dataset source folder folder, a subfolder datatables should be present. This is the root for a set of folders,
each one describing an individual data table, with the name of the folder serving as an identifier.

In each data table folder, a file data should be present, containing a list of all the data items in the table. Each line
consists in a set of TAB-delimited properties. The first line of the file serves as a header, specifying the identifiers for
all properties (example file).

In addition, a yaml settings file should be present in the data table folder. This file can contain a number of
settings, both at the level of the data table, as at the level of individual properties (see Data table settings).

See also:

• Data table

• Source files structure

2D data table source files

In the dataset source folder folder, a subfolder 2D_datatables should be present. This is the root for a set of
folders, each one describing an individual 2D data table, with the name of the folder serving as an identifier.

In each 2D data table folder, a file data.hdf5 should be present, containing the arrays of properties. (example file).

In addition, a yaml settings file should be present in the 2D data table folder (see 2D Datatable settings).

HDF5 source file structure The source file data.hdf5 should be structured according to the HDF5 standard, and
may contain the following arrays, which must be contained in the root of the HDF5 file:

Properties arrays One or more arrays specifying properties of the 2D data table. Note that these arrays can be 3D
but the first two dimensions should be row and column.

Column index 1D array A 1D array listing the identifiers of all columns, in the order they are used in the properties
matrices.

Row index 1D array A 1D array listing the identifiers of all rows, in the order they are used in the properties matrices.

Only scalar builtin dtypes (ie not structured with fields or user-defined) or strings currently permitted for HDF5 arrays.

Example python HDF5 creation code:

12 Chapter 1. Contents

https://raw.githubusercontent.com/cggh/panoptes/master/sampledata/datasets/Samples_and_Variants/refgenome/summaryvalues/Uniqueness/values
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/refgenome/summaryvalues/Uniqueness/settings
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/refgenome/summaryvalues/Accessibility/settings
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/data
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Genotypes/2D_datatables/genotypes/data.hdf5
http://www.hdfgroup.org/HDF5/

panoptes Documentation, Release 1.0-SNAPSHOT

import h5py
outfile = h5py.File(filename,'w', libver='latest')
call = outfile.create_dataset("call", (1000,10,2), dtype='i1')
call[:,:,:] = my_array_of_calls
allele_depth = outfile.create_dataset("allele_depth", (1000,10,3), dtype='i2')
allele_depth[:,:,:] = my_array_depth
quality = outfile.create_dataset("quality", (1000,10), dtype='i4')
quality[:,:] = my_array_of_quality
outfile.close()

We recommend using VCFNP for converting from VCF. See the VCF example for details of how to do this.

See also

• Data table

• Source files structure

Workspace source files

In the dataset source folder, a subfolder workspaces should be present. This is the root for a set of subfolders, each
one describing a workspace for this dataset. The folder name serves as identifier for the workspace.

In a workspace folder, a yaml structured settings file should be present, specifying the displayed name of the
workspace (see Workspace settings).

In addition, a subfolder customdata should be present. This location is used to specify Custom data, which has the
following basic properties:

• It only exists in the context of a specific workspace.

• It adds extra properties to a data table that already exists in the dataset.

• The primary key of the data table (as defined in the settings) is used to link the custom properties to the original
table.

See also:

• Workspace

• Source files structure

Custom data source files

The customdata folder in a workspace source folder should have a subfolder for each data table it defines data for,
and the folder name should be the data table identifier. In this data table - specific folder, a number of subfolder can
be defined, each one specifying an individual custom data source. Such a subfolder should contain two files:

• data. TAB-delimited file containing the custom property values (example file).

• settings. (yaml formatted). Specifies how the custom data should be interpreted (see Custom data settings).

See also:

• Custom data

• Source files structure

1.3. Loading data 13

https://github.com/alimanfoo/vcfnp
https://github.com/cggh/panoptes/tree/master/sampledata/datasets/vcf_example
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/workspaces/workspace_1/customdata/variants/custom1/data

panoptes Documentation, Release 1.0-SNAPSHOT

Documentation source files

A dataset source folder may optionally contain a subfolder doc, containing html files that can be displayed in
Panoptes’ internal documentation viewer.

These files should follow proper XML formatting, and contain a <body> element. The html may contain hyperlinks
to other documentation files in the same source directory, or to external links.

These documents may be referred to in other components of the source data, such as descriptions of the
dataset or data tables. Referring happens through a hyperlink with the structure <a class="doclink"
href="[docid]">hyperlink display name, with [docid] the file name of the document file with-
out the .html extension.

On the deployment, this will render as a hyperlink that leads to an in-app popup showing the documentation in the
source file.

1.3.4 Using the Panoptes admin web frontend

Panoptes has an admin web frontend that can be used to manipulate the source data. This admin section can be opened
in several ways:

• From the Panoptes web app, when the startup menu is show with a choice of datasets: click on “Open admin
page”.

• From a Panoptes dataset session: click on the Panoptes logo in the top left corner, and then on “Open admin
page” in the popup.

Note: The user must have sufficient privileges in order to have access to this admin section (see also Authorization).

See also:

Creating a new dataset

Using the admin web frontend, a new dataset can be created by clicking the icon, next to the top branch
“Datasets”.

In the dialog box, specify a unique identifier for this new dataset.

Note: This identifier will be used internally, and is different from the display name which is specified in the settings.
The data will be imported into a database that has a name equal to this identifier.

Caution: Make sure that the identifier is a valid variable name (see Valid data identifiers).

This action creates a new source data directory for this dataset on the server (see also Dataset source files).

Follow-up actions

Modify the settings: Click on the icon left of the dataset label (see Data import settings and and General dataset
settings).

Add a data table to this dataset: Click on the icon right of the “Datatables” label in the dataset section (see
Add a new data table to a dataset).

14 Chapter 1. Contents

panoptes Documentation, Release 1.0-SNAPSHOT

Import the source data: Importing a dataset from source the data to the server database does not happen automati-

cally, and has to be initiated by the user. Click on the icon left of the dataset label to initiate this import.
(see Import dialog box).

Add a new data table to a dataset

Using the admin web frontend, a new data table can be created by clicking the button , next to the label “Datata-
bles”, under the tree branch that represents the dataset.

A dialog box appears that allows one to pick a TAB-delimited file from the local computer, and upload it to the
Panoptes server as a source file for a new data table (example file).

• Click “Choose file” to select the local file that contains the data for this data table.

• Click “Create data table” to create a new data table source, based on this file.

Notes

• The name of the local source file will be used as an internal identifier for this custom data table. During import,
these data will be loaded into a relational database table that has a name equal to this identifier.

• The columns in the source file will be mapped to properties of the data table.

• The column header names will be used as the property unique ID’s.

Caution: Make sure that the source file name, and the column headers are valid variable names (see Valid data
identifiers).

This action creates a new data table directory for this dataset on the server, and uploads the file as data source (see also
Data table source files).

Follow-up actions

Review the uploaded data file content: Click on the icon left of the data table label to bring up a top N row view
of the uploaded source data.

Modify the settings: Click on the icon left of the data table label (see Data import settings and and Data table
settings).

Import the source data: Updating a dataset from source the data to the server database does not happen automat-

ically, and has to be initiated by the user. Click on the icon left of the dataset label (see Import dialog
box).

Add a new workspace to a dataset

Using the admin web frontend, a new workspace can be created by clicking the button , next to the label
“Workspaces”, under the tree branch that represents the dataset.

In the dialog box, specify a unique identifier for this new workspace.

Note: This identifier will be used internally, and is different from the display name which is specified in the settings.

1.3. Loading data 15

https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/data

panoptes Documentation, Release 1.0-SNAPSHOT

Caution: Make sure that the identifier is a valid variable name (see Valid data identifiers).

This action creates a new workspace directory for this dataset on the server (see also Workspace source files).

Follow-up actions

Modify the settings: Click on the icon left of the workspace label (see Data import settings).

Add custom data to this workspace: Click on the icon right of the “Custom data” label in the workspace sec-
tion (see Add a custom data source to a workspace and and Workspace settings).

Re-import the source data: Updating a dataset from source the data to the server database does not happen auto-

matically, and has to be initiated by the user. Click on the icon left of the dataset label (see Import dialog
box).

Add a custom data source to a workspace

Using the admin web frontend, custom data can be added by clicking the button , next to the label “Custom data”,
under the tree branch that represents the workspace.

A dialog box appears that allows one to pick a TAB-delimited file from the local computer, and upload it to the
Panoptes server as a source file for a new custom data source (example file).

• Click “Choose file” to select the local file that contains the data for this custom data source.

• Select the data table identifier to which this custom data should be attached to

• Click “Create custom data file” to create a new custom data source, based on this file.

This action creates a new custom data directory for this workspace on the server, and uploads the file as data source
(see also Custom data source files).

Notes

• The name of the local source file will be used as an internal identifier for this custom data source.

• The columns in the source file will be mapped to extra properties of the data table, only visible in the context of
the workspace this data source is loaded in.

• The column header names will be used as the property unique ID’s.

• The property ID’s defined in this custom data source must be globally unique for this data table, and all other
custom data sources associated with this data table.

• The custom data source must have a column with a name that corresponds to the primary key defined for this
data table. The custom data records will be merged to the data table by joining the values of this primary key.

Caution: Make sure that the source file name, and the column headers are valid variable names (see Valid data
identifiers).

Follow-up actions

Review the uploaded data file content: Click on the icon left of the data table label to bring up a top N row view
of the uploaded source data.

16 Chapter 1. Contents

https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/workspaces/workspace_1/customdata/variants/custom1/data

panoptes Documentation, Release 1.0-SNAPSHOT

Modify the settings: Click on the icon left of the custom data label (see Data import settings and Custom data
settings).

Import the source data: Updating a dataset from source the data to the server database does not happen automati-
cally, and has to be initiated by the user.

• If the dataset was not yet been imported or is outdated, click on the icon left of the dataset label. This
will initiate the import of the entire data set, including custom data.

• If the dataset was already imported earlier, the custom data can be added by clicking on the icon left of
the custom data label. This will only import the custom data, augmenting the already deployed database.
(see Import dialog box).

Add reference genome annotation

Using the admin web frontend, reference genome annotation data can be added to a dataset by

1. Clicking the icon to the left of the label “Reference genome”, under the tree branch that represents the
dataset.

2. Click the button “Annotation” in the popup.

A dialog box appears that allows one to pick a GFF annotation file from the local computer, and upload it to the
Panoptes server as a source file for genome annotation.

• Click “Choose file” to select the local file that contains the genome annotation.

• Click “Create annotation” to define this file as the source of annotation.

Follow-up actions

Modify the reference genome settings:

1. Click on the icon left of the label “Reference genome“

2. Click on the button “Edit Settings” in the popup. (see Data import settings and Reference genome settings)

Edit the chromosome definitions:

1. Click on the icon left of the label “Reference genome“

2. Click on the button “Edit Chromosome definition” in the popup.

Import the source data: Updating a dataset from source the data to the server database does not happen automati-

cally, and has to be initiated by the user. Click on the icon left of the dataset label to initiate this import.
(see Import dialog box).

Add reference genome sequence

Using the admin web frontend, a reference genome sequence can be added to a dataset by

1. Clicking the icon to the left of the label “Reference genome”, under the tree branch that represents the
dataset.

2. Click the button “Reference genome” in the popup.

1.3. Loading data 17

panoptes Documentation, Release 1.0-SNAPSHOT

A dialog box appears that allows one to pick a FASTA sequence file from the local computer, and upload it to the
Panoptes server as a source file for the reference genome sequence.

• Click “Choose file” to select the local file that contains the reference genome sequence.

• Click “Create reference genome” to define this file as the source of the reference genome sequence.

Follow-up actions

Modify the reference genome settings:

1. Click on the icon left of the label “Reference genome“

2. Click non the button “Edit Settings” in the popup. (see Data import settings and and Reference genome
settings)

Edit the chromosome definitions:

1. Click on the icon left of the label “Reference genome“

2. Click non the button “Edit Chromosome definition” in the popup.

Import the source data: Updating a dataset from source the data to the server database does not happen automati-

cally, and has to be initiated by the user. Click on the icon left of the dataset label to initiate this import.
(see Import dialog box).

Data import settings

Most source data resources have settings that are specified through a YAML definition file. Using the admin web

frontend, these settings can be edited by clicking the icon, left of the label that identifies a source data resource.

Note: The sample dataset Samples_and_Variants contains settings files that are fully commented, and can serve as
a starting point to explore the possible options. There is also a VCF example which shows data imported from VCF.
Additional comments are provided in other sample datasets as well, wherever concepts are introduced that are not
present in this dataset.

General dataset settings

This YAML file contains settings for a dataset. See also:

• Data import settings

• Creating a new dataset

• Example file

Possible keys

Name Text (required). The visible name of the dataset, as it appears on the intro page.

NameBanner Text. Visible name of the dataset, as it appears on the top banner of the app. Note: this text may contain
html markup.

18 Chapter 1. Contents

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/tree/master/sampledata/datasets/Samples_and_Variants
https://github.com/cggh/panoptes/tree/master/sampledata/datasets/vcf_example
http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/settings

panoptes Documentation, Release 1.0-SNAPSHOT

Description Text. A description of the dataset that appears on the start page. Note: this text may contain html markup,
and documentation links (see Documentation source files). A longer description can be split over several lines
by writing a > sign on the key line, and indent subsequent lines:

Description: >
This web application provides an interactive view
on the data ...

DataTables List. A list of the data table identifiers in the dataset. These names should correspond to directory names
in the datatables source directory (see Data table source files). This can be included in the settings in order to
provide an explicit ordering of the data tables in the app. If this key is not provided, a default ordering wil be
used.

2D_DataTables List. List the 2D data tables that should be exposed in the app.

IntroRightPanelFrac Value. Controls the proportion of left and right columns on the start page. If set to zero, the
right column will be absent.

IntroSections List. Enumerates sections on the intro page that can contain quick start buttons to specific views in
the app. Buttons can be added to these sections by (1) clicking on the “Get Link” button in the top right corner
of the app, (2) clicking on one of the “Add to start page” options, and (3) entering the right section id in the
“Section” edit box. Similarly, a button displaying a plot can be created by clicking the link button in the plot
popup. The block can contain the following keys:

Id Text. Unique identifier of the section.

Name Text. Displayed title.

Content Text. Intro text of the section, appearing above the buttons. This text can be HTML format-
ted.

RightPanel Boolean. If set, the section will appear in the right column, replacing the default content
of this column.

GoogleAnalyticsId Text. .

Data table settings

This YAML file contains settings for a data table. See also:

• Data import settings

• Add a new data table to a dataset

• Example file

Possible keys

NameSingle Text (required). Display name referring to a single table item (single, without starting capital).

NamePlural Text (required). Display name referring to several table items (plural, without starting capital).

Description Text. Default:. A short description of this data table. This text will appear on the intro page, and on the
table view page of this data table. Note: this text may contain documentation links (see Documentation source
files).

Icon Text. Specifies an icon that will be associated with the data table. The icon name can be chosen from the list
specified in http://fortawesome.github.io/Font-Awesome/icons/.

IsHidden Boolean. If set to true, the data table will not be displayed as a standalone entity (i.e. not mentioned on the
intro page and no tab).

1.3. Loading data 19

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/settings
http://fortawesome.github.io/Font-Awesome/icons/

panoptes Documentation, Release 1.0-SNAPSHOT

PrimKey PropertyID (required). The primary key property ID for this table. A data item property is a column in
the TAB-delimited source file data, and the ID corresponds to the column header. The primary key should
refer to a column containing a unique value for each record in the table. Optionally, this parameter can be set to
‘AutoKey‘ to instruct the software to automatically generate a primary key.

ItemTitle Text. A handlebars template. Defaults to the primary key. The rendered template will be used when a data
item title is needed.

SortDefault PropertyID. Specifies the property ID (i.e. column name in the data source file) used as the default sort
field..

CacheWorkspaceData Boolean. If set, a materialised table will be created in the relational database for this data in
each workspace. For large data tables (>1M records), this option is faster than the standard option, which uses
a JOIN statement.

MaxCountQueryRecords Value. Default:200000. Defines the maximum number of records that will be downloaded
to the client. This limit influences views that display individual data items, such as scatter plots and geographical
map views. If not specified, this defaults to 200,000.

MaxCountQueryAggregated Value. Default:1000000. Defines the maximum number of records that will be queried
on the server for views that present data items in an aggregated way, such as histograms and bar graphs. If not
specified, this defaults to 1,000,000.

FetchRecordCount Boolean. Default:False. .

QuickFindFields PropertyIDs. The list of properties will be used by some tools in the software that allow the user to
quickly find a (set of) item(s).

ColumnIndexField Text. When this table is linked to a 2D data table setting this value to the same as that in the 2D
settings provides a performance improvement for large data sets.

DisableSubsets Boolean. If set, there will be no subsets options for this data table.

DisablePlots Boolean. If set, there will be no options to create plots for this data table.

DisableNotes Boolean. If set, it will not be possible to define notes for items in this data table.

PropertyGroups List. Each item in the list specifies a group of properties. Property groups are used to combine sets
of related properties into logical sections in the app. The block can contain the following keys:

Id Text (required). a unique identifier for the group.

Name Text (required). a display name.

AutoScanProperties - deprecated - please use scripts/mksettings.sh to generate a skeleton settings.gen file and use that
to create a settings file .. _Properties: Properties

List (required). Each list item defines a property, linked to a column in the TAB-delimited source file
data. See Datatable property settings settings for an overview of the keys that can be used for each
property in this list.

DataItemViews List. Definitions of custom views that will appear in the popup for an individual data table item. The
block can contain the following keys:

Type Text (required). Identifier of the custom view type

(can be Overview, PropertyGroup, FieldList, ItemMap, PieChartMap) See
DataItemViews settings for more details about defining custom data item views.

ExternalLinks List. Each item in the list specifies a link for a data item to an external url. These links show up in the
app as buttons in the data item popup window. The block can contain the following keys:

Url

20 Chapter 1. Contents

http://handlebarsjs.com/

panoptes Documentation, Release 1.0-SNAPSHOT

Text (required). Url for this link. This may include tokens property ID’s between curly braces.
These tokens will be expanded to their actual content for a specific data item. Example:
http://maps.google.com/maps?q={Lattitude},{Longitude}.

Name Text (required). Display name for this external link.

ListView Boolean. Default:False. Replaces the normal table view with a list view, showing rows on left and a single
selected row on the right.

IsPositionOnGenome Boolean. Default:False. Instructs Panoptes that records in this data table should be interpreted
as genomic positions. In this case, the Chromosome and Position keys should be defined.

IsRegionOnGenome Boolean. Default:False. Instructs Panoptes that records in this datatable should be interpreted
as genomic regions. In this case, the Chromosome, RegionStart and RegionStop keys should be defined.

BrowserTrackHeightFactor Value. Specifies a relative size factor for the genome browser track height (only appli-
cable if IsPositionOnGenome or IsRegionOnGenome is set).

Chromosome PropertyID. Specifies the table column ID that contains the chromosome (only to be used if IsPosi-
tionOnGenome or IsRegionOnGenome is set). Note that the values in this column should correspond to the
content of the chromosomes source file (see Reference genome source files).

Position PropertyID. Specifies the table column ID that contains the position on the chromosome (only to be used if
IsPositionOnGenome is set).

RegionStart PropertyID. Specifies the table column ID that contains the start position of the region (only to be used
if IsRegionOnGenome is set).

RegionStop PropertyID. Specifies the table column ID that contains the end position of the region (only to be used if
IsRegionOnGenome is set).

GenomeMaxViewportSizeX Value. Specifies the maximum genome browser viewport size (in bp) for which indi-
vidual data points from this table will be displayed in the tracks. (only to be used if IsPositionOnGenome or
IsRegionOnGenome is set).

BrowserDefaultVisible Boolean. For genomic regions: specifies the default visibility status of this data table in
the genome browser (only to be used if IsRegionOnGenome is set). Note that, for genomic position, default
visibility is specified on a per-property basis.

AllowSubSampling Boolean. Default:False. .

MaxTableSize Value. Default:None. .

BrowserDefaultLabel PropertyID. Specifies the default label that is used in the genome browser, used for genomic
regions. None indicates that no label is displayed by default.

TableBasedSummaryValues List. Declares that numerical genome values for are available for each item in the table.
Panoptes will process these using the multiresolution filterbanking, and the user can display these as tracks in
the genome browser. A typical use case is if the data table contains samples that were sequenced, and there is
coverage data available

Approach 1

There should be a subdirectory named after the identifier of this track in the data table source data folder. For
each data item, this directory should contain a data file with the name equal to the primary key (see example).
The input files should not contain a header row

The Id is the identifier of this set of per-data-item genomic values i.e. the name of the subdirectory

Approach 2

This approach is more like the way the table based data files are processed. In this case multiple tracks can be
stored in the same input file. The Id corresponds to the column name instead of the directory name with the
directory details given in the FilePattern expression The name is the first match in the FilePattern expression

1.3. Loading data 21

https://github.com/cggh/panoptes/tree/master/sampledata/datasets/Samples_and_Variants/datatables/samples/SampleSummary1

panoptes Documentation, Release 1.0-SNAPSHOT

.

The block can contain the following keys:

Id Text (required). Identifier of this set of per-data-item genomic values - name of subdirectory or Identi-
fier of this set of per-data-item genomic values - name of the column in the matching files.

FilePattern Text. A glob (regular expression) containing a relative path to the file(s).

Name Text (required). Display name of the property.

MinVal Value (required). Default:0. Value used for lower extent of scales.

MaxVal Value (required). Value used for upper extent of scales.

BlockSizeMin Value (required). Default:1. Minimum block size used by the multiresolution summariser
(in bp).

BlockSizeMax Value (required). Maximum block size used by the multiresolution summariser (in bp).

ChannelColor Text. Colour used to display these tracks as a genome browser track. Formatted as
"rgb(r,g,b)".

Datatable property settings An overview of the possible keys than can be defined for an individual property in the
Properties block of the data table settings.

Id Text (required). Identifier of the property, equal to the corresponding column header in the TAB-delimited source
file data.

DataType Text (required). Data type of the values in the property. Possible values:

• Text: text strings.

• Value: numerical values (integer of decimal; the distinction is made by the key DecimDigits). Absent
values can be coded by an empty string, “NA”, “None”, “NULL”, “null”, “inf” or “-”.

• HighPrecisionValue: same as Value, with higher precision.

• Boolean: Yes/No binary states. Possible values according to YAML:
y|Y|yes|Yes|YES|n|N|no|No|NO|true|True|TRUE|false|False|FALSE|on|On|ON|off|Off|OFF. Absent values
are coded by an empty string.

• GeoLongitude: longitude part of a geographical coordinates (in decimal degrees). Absent values are
coded by an empty string.

• GeoLattitude: latitude part of a geographical coordinates (in decimal degrees). Absent values are
coded by an empty string.

• Date: calendar dates, ISO formatted (i.e. YYYY-MM-DD). Absent values are coded by an empty string.

Name Text (required). Display name of the property.

Description Text. Brief description of the property. This will appear in hover tool tips and in the popup box if a user
clicks a property info button.

GroupId Text. Id of the Property group this property belongs to.

ExternalUrl Text. A url that should be opened when the user clicks on a value of this property. The url
should be formatted as a template, with {value} interpolated to the property value. For example:
http://www.ebi.ac.uk/ena/data/view/{value}.

IsCategorical Boolean. Instructs Panoptes to treat the property as a categorical variable. For example, a combo
box with the possible states is automatically shown in queries for this property. Categorical properties are
automatically indexed.

22 Chapter 1. Contents

panoptes Documentation, Release 1.0-SNAPSHOT

CategoryColors Block. Specifies display colours for the categorical states of this property. Each key in the block
links a possible value of the property to a color (example: Accepted: rgb(0,192,0)). The special value
other can be used to specify a color for all other property values that are not listed explicitly.

MaxColumnWidth Value. Specifies the maximum width (in pixels) used for the column representing this property
in a table view. Longer text will be abbreviated with ellipsis.

BarWidth Value. Draws a bar in the background of the table, indicating the value. Requires MinVal & MaxVal to be
defined(only applies if DataType is [’Value’, ‘HighPrecisionValue’]).

MinVal Value. Default:0. For Value types, upper extent of scale(only applies if DataType is [’Value’, ‘HighPrecision-
Value’]).

MaxVal Value. Default:1.0. For Value types, lower extent of scale(only applies if DataType is [’Value’, ‘HighPreci-
sionValue’]).

MaxLen Value. Default:0. If present used to specify the maximum size of the database column - otherwise it is
calculated.

DecimDigits Value. For Value types, specifies the number of decimal digits used to display the value(only applies if
DataType is [’Value’, ‘HighPrecisionValue’]).

MaxDecimDigits Value. (Not currently used) For Value types, specifies the number of decimal digits used to store
the value in the database(only applies if DataType is [’Value’, ‘HighPrecisionValue’]).

Index Boolean. Default:False. If set, instructs Panoptes to create an index for this property in the relational database.
For large datasets, this massively speeds up queries and sort commands based on this property.

Search Text. Default:None. Indicates that this field can be used for text search in the find data item wizard. Possible
values:

• None: .

• Match: only exact matched are searched for.

• StartPattern: searches all text that starts with the string typed by the user.

• Pattern: searches all text that contains the string typed by the user.

Relation Block. Defines a many-to-one foreign relation to a parent data table. The parent table should contain a
property with the same name as the primary key property in the child table. The block can contain the following
keys:

TableId DatatableID (required). Data table ID of the relation parent table.

ForwardName Text (required). Default:belongs to. Display name of the relation from child to
parent.

ReverseName Text (required). Default:has. Display name of the relation from parent to child.

ReadData Boolean. Default:True. If set to false, this property will not be imported from the TAB-delimited source
file.

CanUpdate Boolean. Default:False. If set to true, this property can be modified by the user. (NOTE: under construc-
tion).

ShowInTable Boolean. If set, this property will appear by default in data table grids in the application.

ShowInBrowser Boolean. If set, this property will automatically appear as a track in the genome browser (only
applies if IsPositionOnGenome is specified in database settings).

BrowserDefaultVisible Boolean. Indicates that the track will activated by default in the genome browser (only
applies if ShowInBrowser is True).

1.3. Loading data 23

panoptes Documentation, Release 1.0-SNAPSHOT

BrowserShowOnTop Boolean. Indicates that the track will be shown in the top (non-scrolling) area of the genome
browser. In this case, it will always be visible (only applies if ShowInBrowser is True).

ChannelName

Text. Name of the genome browser track this property will be displayed in. Properties sharing the same
track name will be displayed in overlay (only applies if ShowInBrowser is True).

ChannelColor Text. Colour used to display this property in the genome browser. Formatted as "rgb(r,g,b)"
(only applies if ShowInBrowser is True).

ConnectLines Boolean. Indicate that the points will be connected with lines in the genome browser (only applies if
ShowInBrowser is True).

DefaultVisible Boolean. Default:True. .

Order Value. Default:-1. Only used for reference genome tracks.

SummaryValues Block. Instructs Panoptes to apply a multiresolution summary algorithm for fast display of this
property in the genome browser at any zoom level(only applies if ShowInBrowser is True). The block can
contain the following keys:

BlockSizeMin Value. Default:1. Minimum summary block size (in bp).

BlockSizeMax Value (required). Maximum summary block size (in bp).

ChannelColor Text. Colour of the channel, for numerical channels. Formatted as "rgb(r,g,b)".

MaxDensity Value. For categorical properties this set the scale for the summary track in rows/bp.
Defaults to 1/bp.

DataItemViews settings The key Type for member of the data table settings key DataItemViews can have the fol-
lowing values:

Type Text (required). Identifier of the custom view type (can be Overview, PropertyGroup, FieldList, ItemMap,
PieChartMap) See DataItemViews settings for more details about defining custom data item views. Possible
values:

• Overview: Specifies the default data item view of Panoptes, including all fields.

• PropertyGroup: Displays all properties that are member of a specific property group.

• FieldList: Displays a selection of properties for the data item.

• ItemMap: Displays the data item as a pin on a geographical map. Requires the presence of properties
with data type GeoLongitude and GeoLattitude.

• PieChartMap: Defines a view that shows a set of pie charts on a geographic map (see example). This is
achieved by combining information from two data tables:

A locations data table. Each item in this data table defines a location where a pie chart is displayed. The
current data table (where the view is defined), which contains the sizes of the pies for each data item as
column values.

A set of properties of the current table is used to define pie sizes on all pie charts. For each pie and location combination there should be a property in the data table, containing the relative size of that specific pie..

• Template: A view that is defined by a template that is filled with row item properties.

Overview Specifies the default data item view of Panoptes, including all fields Name

Text (required). Display name of this view.

24 Chapter 1. Contents

panoptes Documentation, Release 1.0-SNAPSHOT

Template A view that is defined by a template that is filled with row item properties Content

Text (required). A handlebars template(only applies if Type is Template).

PropertyGroup Displays all properties that are member of a specific property group GroupId

Text (required). Identifier of the property group to display(only applies if Type is PropertyGroup).

FieldList Displays a selection of properties for the data item Introduction

Text. A static text that will be displayed on top of this view(only applies if Type is FieldList).

Fields PropertyIDList (required). Each item in this list specifies a property ID(only applies if Type is FieldList).

ItemMap Displays the data item as a pin on a geographical map. Requires the presence of properties with data type
GeoLongitude and GeoLattitude MapZoom

Value (required). Start zoom factor of the map (integer, minimum value of 0)(only applies if one of the
following is true:(Type is ItemMap)(Type is PieChartMap)).

PieChartMap Defines a view that shows a set of pie charts on a geographic map (see example). This is achieved by
combining information from two data tables:

• A locations data table. Each item in this data table defines a location where a pie chart is displayed.

• The current data table (where the view is defined), which contains the sizes of the pies for each data item as
column values.

A set of properties of the current table is used to define pie sizes on all pie charts. For each pie and location combination
there should be a property in the data table, containing the relative size of that specific pie PieChartSize

Value (required). Displayed size of the largest pie chart(only applies if Type is PieChartMap).

MapCenter Block (required). Specifies the map center in the start view(only applies if Type is PieChartMap). The
block can contain the following keys:

Longitude Value (required). Geographic longitude.

Lattitude Value (required). Geographic latitude.

DataType Text (required). Type of values used to create the pie chart(only applies if Type is PieChartMap). Possible
values:

• Fraction: .

PositionOffsetFraction Value (required). An offset between the pie chart location and the actual chart, used to
achieve a nice (ideally non-overlapping) view(only applies if Type is PieChartMap).

LocationDataTable Text (required). ID of the data table containing the locations (this table should have properties
with GeoLongitude and GeoLattitude data types)(only applies if Type is PieChartMap).

LocationSizeProperty Text (required). Property ID of the locations data table containing the size of the pie chart(only
applies if Type is PieChartMap).

LocationNameProperty Text (required). Property ID of the locations data table containing the name of the pie
chart(only applies if Type is PieChartMap).

ComponentColumns List (required). Enumerates all the pies displayed on the pie charts, and binds them to properties
of this data table (one for each combination of component x location)(only applies if Type is PieChartMap). The
block can contain the following keys:

1.3. Loading data 25

http://handlebarsjs.com/
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/settings

panoptes Documentation, Release 1.0-SNAPSHOT

Pattern Text (required). Property ID of the column providing the data. NOTE: the token {locid}
will be replaced by the primary key value of the records in the locations data table.

Name Text (required). Display name of the pie.

Color Text (required). Color of the pie. Format: rgb(r,g,b).

ResidualFractionName Text. Name of the pie representing residual fraction (only applicable if the fractions do not
sum up to 1)(only applies if Type is PieChartMap).

2D Datatable settings

This YAML file contains settings for a 2D data table. See also:

• Data import settings

• 2D data table source files

• Example file

Possible keys

NameSingle Text (required). Display name referring to data of an individual cell (single, without starting capital).

NamePlural Text (required). Display name referring to data of several cells (plural, without starting capital).

Description Text. Default:. A short description of this 2D data table. Note: this text may contain documentation links
(see Documentation source files).

ColumnDataTable Text (required). Identifier of the (1D) data table defining the columns of the matrix (In case of
genotype data: the variants). This links the 2D data table to the 1D data table containing the column information.

ColumnIndexField Text (required). The property ID in the ColumnDataTable data table that maps into the
ColumnIndexArray array in the HDF5 source file. ColumnIndexField and ColumnIndexArray
together establish the link between the column data table values, and the data present in the HDF5 source file.
Alternatively ColumnIndexArray can be omitted implying that the columns in HDF5 are in the same order
as ColumnIndexField sorted. Note that “AutoKey” can be used if your rows do not have Unique IDs.

ColumnIndexArray Text. 1D Array in the HDF5 source file that gives the value of ColumnIndexField for
each column. If this is omitted then it is assumed that the HDF5 columns are in the same order as the
ColumnDataTable data table, sorted by the ColumnIndexField property.

RowDataTable Text (required). Identifier of the (1D) data table defining the rows of the matrix (in case of genotype
data: the samples). This links the 2D data table to the 1D data table containing the row information.

RowIndexField Text (required). The property ID in the RowDataTable data table that maps into
RowIndexArray array in the HDF5 source file. RowIndexField and RowIndexArray together es-
tablish the link between the row data table values, and the data present in the HDF5 source file. Alternatively
RowIndexArray can be omitted implying that the rows in HDF5 are in the same order as RowIndexField
sorted. Note that “AutoKey” can be used if your rows do not have Unique IDs.

RowIndexArray Text. 1D Array in the HDF5 source file that gives the value of RowIndexField for each row. If
this is omitted then it is assumed that the HDF5 columns are in the same order as the RowDataTable data
table, sorted by the RowIndexField property.

FirstArrayDimension Text. Either ‘row’ or ‘column’ to indicate the first dimension in the HDF5 array. ‘column’
will generally perform better. Possible values:

• row: .

• column: .

26 Chapter 1. Contents

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Genotypes/2D_datatables/genotypes/settings

panoptes Documentation, Release 1.0-SNAPSHOT

SymlinkData Boolean. Default:False. If true then the HDF5 source file will not be copied but only symlinked. Note
that if your HDF5 doesn’t have small enough chunking (max few MB per chunk) then performance will suffer.
The default of False copies and rechunks the HDF5.

ShowInGenomeBrowser Block. If this key is present, the data will be visualised as a channel in the genome browser.
This requires that data table used as ColumnDataTable is defined as “IsPositionOnGenome” (see Data table
settings) This key contains the following subkeys, Either ‘Call’ or ‘AlleleDepth’ or both must be present. The
block can contain the following keys:

Call PropertyID. Reference to the 2D data table property that contains call information.

AlleleDepth PropertyID. Reference to the 2D data table property that contains depth information.

ExtraProperties PropertyIDList. A list of the extra 2D data table properties that are displayed in
the genotype channel. This will populate options for alpha and height control.

GenomeMaxViewportSizeX Value. Maximum size of the genome browser viewport (in bp) for which genotype calls
will be displayed.

Properties List (required). Contains a list of all properties defined for each cell of the 2D data table. The block can
contain the following keys:

Id Text (required). Identifier of the property, and name of the dataset in the HDF5 source file.

Name Text. Display name of the property.

Description Text. Short description of this property.

MinVal Value. For continuous properties the lower level at which values will be clipped on display.

MaxVal Value. For continuous properties the upper level at which values will be clipped on display.

Workspace settings

This YAML file contains settings for a workspace. See also:

• Data import settings

• Add a new workspace to a dataset

• Example file

Possible keys

Name Text (required). Display name of the workspace.

Reference genome settings

This YAML file contains settings for the reference genome. See also:

• Data import settings

• Add reference genome annotation

• Add reference genome sequence

• Example file

1.3. Loading data 27

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/workspaces/workspace_1/settings
http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/refgenome/settings

panoptes Documentation, Release 1.0-SNAPSHOT

Possible keys

GenomeBrowserDescr Text. Descriptive text that will be displayed in the genome browser section of the main page.

AnnotMaxViewPortSize Value. Maximum viewport (in bp) the genome browser can have in order to show the
genome annotation track.

RefSequenceSumm Boolean. If set, a summary track displaying the reference sequence with be included in the
genome browser.

Annotation Block. Directives for parsing the annotation file (annotation.gff). The block can contain the following
keys:

Format

Text. File format. Possible values GFF = Version 3 GFF file GTF = Version 2 GTF file

.

GeneFeature Text or List. Feature id(s) used to identify genes.

Example: [gene, pseudogene].

ExonFeature Text or List. Feature id(s) used to identify exons.

GeneNameAttribute Text. Attribute id used to identify gene names.

GeneNameSetAttribute Text or List. Attribute id(s) used to identify gene name sets.

Example: [Name,Alias].

GeneDescriptionAttribute Text or List. Attribute id(s) used to identify gene descriptions.

ExternalGeneLinks List. Each item in the list specifies a link for a gene to an external url. These links will show up
as buttons in the gene popup window. The block can contain the following keys:

Url Text (required). Url for this link. This may include a token {Id} to refer to the unique gene
identifier. Example: https://www.google.co.uk/search?q={Id}.

Name Text (required). Display name for this external link.

Custom data settings

This YAML file contains settings for a custom data source. See also:

• Data import settings

• Add a custom data source to a workspace

• Example file

Possible keys

AutoScanProperties Boolean. If set, Panoptes will try to automatically obtain property definitions from the TAB-
delimited source data file.

PropertyGroups List. Each item in the list specifies a group of properties. It should contain two keys: “Id” repre-
senting a unique identifier for the group, and “Name” representing a display name. Property groups can be used
to combine sets of related properties into sections in the app.

Properties List (required) The data table yaml should contain a key “Properties”, which contains a list of descriptions
for all columns used in the app for this custom data table. See Datatable property settings for an overview of
the keys that can be used for each individual item in this list.

28 Chapter 1. Contents

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/workspaces/workspace_1/customdata/samples/SampleMetaData/settings

panoptes Documentation, Release 1.0-SNAPSHOT

DataItemViews List. Definitions of custom views that will appear in the popup for an individual datatable item. The
views defined at the level of this custom data source will be added to the standard data item popup. Each item
in the list should contain the following key:

Type Text (required). Identifier of the custom view type (can be Overview, PropertyGroup, FieldList,
ItemMap, PieChartMap) See DataItemViews settings for more details about these custom views.

Valid data identifiers

Many identifiers used in the source data structures (resource identifiers, file and folder names, table column headers,
etc..), are directly mapped to identifiers in the MySQL database tables. Therefore, they should be formatted as standard
variable names:

• Do not contain dashes, white spaces or other special characters.

• Do not start with a number.

1.4 Source files structure

Internally, Panoptes uses a combination of a set of MySQL databases and a file structure to serve the data. Data are
loaded into this system be launching an import action that reads the data from a source file location (specified by
SOURCEDATADIR in config.py, see also Server data file structure).

The formatting of the source data relies a few concepts:

• It is organised in a way that closely mimicks the basic concepts of the Panoptes data structures, using nested
folders to reflect the structure.

• In most cases, data are provided using simple, TAB-delimited files. Exceptions are made in those cases where
a widely accepted standard format is used for a specific type of information (e.g. GFF files for genome annota-
tions).

• YAML (http://www.yaml.org/about.html) structured files are used to provide the necessary metadata to interpret
and parse the data in the context of Panoptes. These metadata are provided in files called settings.

Caution: Many identifiers used in the source data structures (folder names, table column headers, etc..), are
directly mapped to identifiers in the MySQL database tables. Therefore, they should be formatted as standard
variable names (e.g. do not contain dashes, white spaces or other special characters, do not start with a number,
...)

1.4.1 Dataset source files

The config.SOURCEDATADIR folder should contain a folder datasets, serving as a root for all datasets being
served by the Panoptes instance.

In this folder, a subfolder should be present for each dataset. The folder name is used as the unique identifier of this
dataset. In the dataset folder, a yaml settings file should be present, specifying the displayed name of the dataset,
and an optional description (see General dataset settings).

See also:

• Dataset

• Source files structure

1.4. Source files structure 29

http://www.yaml.org/about.html

panoptes Documentation, Release 1.0-SNAPSHOT

1.4.2 Reference genome source files

A dataset source folder may optionally contain a subfolder refgenome, describing the reference genome used. It
can contain the following files:

• chromosomes (required). A list of all chromosomes identifiers, and their lengths (in MB).

• annotation.gff (required). The annotation of the reference genome, in GFF format.

• refsequence.fa (optional). The reference genome sequence, as FASTA file.

• settings (required, yaml formatted). Various settings concerning the reference genome (see Reference
genome settings).

Summary values source files

The refgenome folder may contain an optional subfolder summaryvalues. Each subfolder in this folder repre-
sents a different (numerical) property defined over the genome that will be filter banked and can be displayed in the
genome browser. The folder name serves as the identifier of the summary value. Each summary value folder should
contain the following two files:

• values. A TAB-delimited file having three columns,and no header (example file):

– column 1: Chromosome identifier

– column 2: Position

– column 3: Value

• settings (yaml formatted). Contains the displayed name of the summary value, and further guidelines on
how to process the information (sample numeric file). (sample categorical).

See also:

• Reference genome

• Source files structure

1.4.3 Data table source files

In the dataset source folder folder, a subfolder datatables should be present. This is the root for a set of folders,
each one describing an individual data table, with the name of the folder serving as an identifier.

In each data table folder, a file data should be present, containing a list of all the data items in the table. Each line
consists in a set of TAB-delimited properties. The first line of the file serves as a header, specifying the identifiers for
all properties (example file).

In addition, a yaml settings file should be present in the data table folder. This file can contain a number of
settings, both at the level of the data table, as at the level of individual properties (see Data table settings).

See also:

• Data table

• Source files structure

30 Chapter 1. Contents

https://raw.githubusercontent.com/cggh/panoptes/master/sampledata/datasets/Samples_and_Variants/refgenome/summaryvalues/Uniqueness/values
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/refgenome/summaryvalues/Uniqueness/settings
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/refgenome/summaryvalues/Accessibility/settings
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/data

panoptes Documentation, Release 1.0-SNAPSHOT

1.4.4 2D data table source files

In the dataset source folder folder, a subfolder 2D_datatables should be present. This is the root for a set of
folders, each one describing an individual 2D data table, with the name of the folder serving as an identifier.

In each 2D data table folder, a file data.hdf5 should be present, containing the arrays of properties. (example file).

In addition, a yaml settings file should be present in the 2D data table folder (see 2D Datatable settings).

HDF5 source file structure

The source file data.hdf5 should be structured according to the HDF5 standard, and may contain the following
arrays, which must be contained in the root of the HDF5 file:

Properties arrays One or more arrays specifying properties of the 2D data table. Note that these arrays can be 3D
but the first two dimensions should be row and column.

Column index 1D array A 1D array listing the identifiers of all columns, in the order they are used in the properties
matrices.

Row index 1D array A 1D array listing the identifiers of all rows, in the order they are used in the properties matrices.

Only scalar builtin dtypes (ie not structured with fields or user-defined) or strings currently permitted for HDF5 arrays.

Example python HDF5 creation code:

import h5py
outfile = h5py.File(filename,'w', libver='latest')
call = outfile.create_dataset("call", (1000,10,2), dtype='i1')
call[:,:,:] = my_array_of_calls
allele_depth = outfile.create_dataset("allele_depth", (1000,10,3), dtype='i2')
allele_depth[:,:,:] = my_array_depth
quality = outfile.create_dataset("quality", (1000,10), dtype='i4')
quality[:,:] = my_array_of_quality
outfile.close()

We recommend using VCFNP for converting from VCF. See the VCF example for details of how to do this.

See also

• Data table

• Source files structure

1.4.5 Workspace source files

In the dataset source folder, a subfolder workspaces should be present. This is the root for a set of subfolders, each
one describing a workspace for this dataset. The folder name serves as identifier for the workspace.

In a workspace folder, a yaml structured settings file should be present, specifying the displayed name of the
workspace (see Workspace settings).

In addition, a subfolder customdata should be present. This location is used to specify Custom data, which has the
following basic properties:

• It only exists in the context of a specific workspace.

• It adds extra properties to a data table that already exists in the dataset.

1.4. Source files structure 31

https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Genotypes/2D_datatables/genotypes/data.hdf5
http://www.hdfgroup.org/HDF5/
https://github.com/alimanfoo/vcfnp
https://github.com/cggh/panoptes/tree/master/sampledata/datasets/vcf_example

panoptes Documentation, Release 1.0-SNAPSHOT

• The primary key of the data table (as defined in the settings) is used to link the custom properties to the original
table.

See also:

• Workspace

• Source files structure

1.4.6 Custom data source files

The customdata folder in a workspace source folder should have a subfolder for each data table it defines data for,
and the folder name should be the data table identifier. In this data table - specific folder, a number of subfolder can
be defined, each one specifying an individual custom data source. Such a subfolder should contain two files:

• data. TAB-delimited file containing the custom property values (example file).

• settings. (yaml formatted). Specifies how the custom data should be interpreted (see Custom data settings).

See also:

• Custom data

• Source files structure

1.4.7 Documentation source files

A dataset source folder may optionally contain a subfolder doc, containing html files that can be displayed in
Panoptes’ internal documentation viewer.

These files should follow proper XML formatting, and contain a <body> element. The html may contain hyperlinks
to other documentation files in the same source directory, or to external links.

These documents may be referred to in other components of the source data, such as descriptions of the
dataset or data tables. Referring happens through a hyperlink with the structure <a class="doclink"
href="[docid]">hyperlink display name, with [docid] the file name of the document file with-
out the .html extension.

On the deployment, this will render as a hyperlink that leads to an in-app popup showing the documentation in the
source file.

1.5 Data import settings

Most source data resources have settings that are specified through a YAML definition file. Using the admin web

frontend, these settings can be edited by clicking the icon, left of the label that identifies a source data resource.

Note: The sample dataset Samples_and_Variants contains settings files that are fully commented, and can serve as
a starting point to explore the possible options. There is also a VCF example which shows data imported from VCF.
Additional comments are provided in other sample datasets as well, wherever concepts are introduced that are not
present in this dataset.

32 Chapter 1. Contents

https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/workspaces/workspace_1/customdata/variants/custom1/data
http://www.yaml.org/about.html
https://github.com/cggh/panoptes/tree/master/sampledata/datasets/Samples_and_Variants
https://github.com/cggh/panoptes/tree/master/sampledata/datasets/vcf_example

panoptes Documentation, Release 1.0-SNAPSHOT

1.5.1 General dataset settings

This YAML file contains settings for a dataset. See also:

• Data import settings

• Creating a new dataset

• Example file

Possible keys

Name Text (required). The visible name of the dataset, as it appears on the intro page.

NameBanner Text. Visible name of the dataset, as it appears on the top banner of the app. Note: this text may contain
html markup.

Description Text. A description of the dataset that appears on the start page. Note: this text may contain html markup,
and documentation links (see Documentation source files). A longer description can be split over several lines
by writing a > sign on the key line, and indent subsequent lines:

Description: >
This web application provides an interactive view
on the data ...

DataTables List. A list of the data table identifiers in the dataset. These names should correspond to directory names
in the datatables source directory (see Data table source files). This can be included in the settings in order to
provide an explicit ordering of the data tables in the app. If this key is not provided, a default ordering wil be
used.

2D_DataTables List. List the 2D data tables that should be exposed in the app.

IntroRightPanelFrac Value. Controls the proportion of left and right columns on the start page. If set to zero, the
right column will be absent.

IntroSections List. Enumerates sections on the intro page that can contain quick start buttons to specific views in
the app. Buttons can be added to these sections by (1) clicking on the “Get Link” button in the top right corner
of the app, (2) clicking on one of the “Add to start page” options, and (3) entering the right section id in the
“Section” edit box. Similarly, a button displaying a plot can be created by clicking the link button in the plot
popup. The block can contain the following keys:

Id Text. Unique identifier of the section.

Name Text. Displayed title.

Content Text. Intro text of the section, appearing above the buttons. This text can be HTML format-
ted.

RightPanel Boolean. If set, the section will appear in the right column, replacing the default content
of this column.

GoogleAnalyticsId Text. .

1.5.2 Data table settings

This YAML file contains settings for a data table. See also:

• Data import settings

• Add a new data table to a dataset

1.5. Data import settings 33

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/settings
http://www.yaml.org/about.html

panoptes Documentation, Release 1.0-SNAPSHOT

• Example file

Possible keys

NameSingle Text (required). Display name referring to a single table item (single, without starting capital).

NamePlural Text (required). Display name referring to several table items (plural, without starting capital).

Description Text. Default:. A short description of this data table. This text will appear on the intro page, and on the
table view page of this data table. Note: this text may contain documentation links (see Documentation source
files).

Icon Text. Specifies an icon that will be associated with the data table. The icon name can be chosen from the list
specified in http://fortawesome.github.io/Font-Awesome/icons/.

IsHidden Boolean. If set to true, the data table will not be displayed as a standalone entity (i.e. not mentioned on the
intro page and no tab).

PrimKey PropertyID (required). The primary key property ID for this table. A data item property is a column in
the TAB-delimited source file data, and the ID corresponds to the column header. The primary key should
refer to a column containing a unique value for each record in the table. Optionally, this parameter can be set to
‘AutoKey‘ to instruct the software to automatically generate a primary key.

ItemTitle Text. A handlebars template. Defaults to the primary key. The rendered template will be used when a data
item title is needed.

SortDefault PropertyID. Specifies the property ID (i.e. column name in the data source file) used as the default sort
field..

CacheWorkspaceData Boolean. If set, a materialised table will be created in the relational database for this data in
each workspace. For large data tables (>1M records), this option is faster than the standard option, which uses
a JOIN statement.

MaxCountQueryRecords Value. Default:200000. Defines the maximum number of records that will be downloaded
to the client. This limit influences views that display individual data items, such as scatter plots and geographical
map views. If not specified, this defaults to 200,000.

MaxCountQueryAggregated Value. Default:1000000. Defines the maximum number of records that will be queried
on the server for views that present data items in an aggregated way, such as histograms and bar graphs. If not
specified, this defaults to 1,000,000.

FetchRecordCount Boolean. Default:False. .

QuickFindFields PropertyIDs. The list of properties will be used by some tools in the software that allow the user to
quickly find a (set of) item(s).

ColumnIndexField Text. When this table is linked to a 2D data table setting this value to the same as that in the 2D
settings provides a performance improvement for large data sets.

DisableSubsets Boolean. If set, there will be no subsets options for this data table.

DisablePlots Boolean. If set, there will be no options to create plots for this data table.

DisableNotes Boolean. If set, it will not be possible to define notes for items in this data table.

PropertyGroups List. Each item in the list specifies a group of properties. Property groups are used to combine sets
of related properties into logical sections in the app. The block can contain the following keys:

Id Text (required). a unique identifier for the group.

Name Text (required). a display name.

34 Chapter 1. Contents

https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/settings
http://fortawesome.github.io/Font-Awesome/icons/
http://handlebarsjs.com/

panoptes Documentation, Release 1.0-SNAPSHOT

AutoScanProperties - deprecated - please use scripts/mksettings.sh to generate a skeleton settings.gen file and use that
to create a settings file .. _Properties: Properties

List (required). Each list item defines a property, linked to a column in the TAB-delimited source file
data. See Datatable property settings settings for an overview of the keys that can be used for each
property in this list.

DataItemViews List. Definitions of custom views that will appear in the popup for an individual data table item. The
block can contain the following keys:

Type Text (required). Identifier of the custom view type

(can be Overview, PropertyGroup, FieldList, ItemMap, PieChartMap) See
DataItemViews settings for more details about defining custom data item views.

ExternalLinks List. Each item in the list specifies a link for a data item to an external url. These links show up in the
app as buttons in the data item popup window. The block can contain the following keys:

Url

Text (required). Url for this link. This may include tokens property ID’s between curly braces.
These tokens will be expanded to their actual content for a specific data item. Example:
http://maps.google.com/maps?q={Lattitude},{Longitude}.

Name Text (required). Display name for this external link.

ListView Boolean. Default:False. Replaces the normal table view with a list view, showing rows on left and a single
selected row on the right.

IsPositionOnGenome Boolean. Default:False. Instructs Panoptes that records in this data table should be interpreted
as genomic positions. In this case, the Chromosome and Position keys should be defined.

IsRegionOnGenome Boolean. Default:False. Instructs Panoptes that records in this datatable should be interpreted
as genomic regions. In this case, the Chromosome, RegionStart and RegionStop keys should be defined.

BrowserTrackHeightFactor Value. Specifies a relative size factor for the genome browser track height (only appli-
cable if IsPositionOnGenome or IsRegionOnGenome is set).

Chromosome PropertyID. Specifies the table column ID that contains the chromosome (only to be used if IsPosi-
tionOnGenome or IsRegionOnGenome is set). Note that the values in this column should correspond to the
content of the chromosomes source file (see Reference genome source files).

Position PropertyID. Specifies the table column ID that contains the position on the chromosome (only to be used if
IsPositionOnGenome is set).

RegionStart PropertyID. Specifies the table column ID that contains the start position of the region (only to be used
if IsRegionOnGenome is set).

RegionStop PropertyID. Specifies the table column ID that contains the end position of the region (only to be used if
IsRegionOnGenome is set).

GenomeMaxViewportSizeX Value. Specifies the maximum genome browser viewport size (in bp) for which indi-
vidual data points from this table will be displayed in the tracks. (only to be used if IsPositionOnGenome or
IsRegionOnGenome is set).

BrowserDefaultVisible Boolean. For genomic regions: specifies the default visibility status of this data table in
the genome browser (only to be used if IsRegionOnGenome is set). Note that, for genomic position, default
visibility is specified on a per-property basis.

AllowSubSampling Boolean. Default:False. .

MaxTableSize Value. Default:None. .

1.5. Data import settings 35

panoptes Documentation, Release 1.0-SNAPSHOT

BrowserDefaultLabel PropertyID. Specifies the default label that is used in the genome browser, used for genomic
regions. None indicates that no label is displayed by default.

TableBasedSummaryValues List. Declares that numerical genome values for are available for each item in the table.
Panoptes will process these using the multiresolution filterbanking, and the user can display these as tracks in
the genome browser. A typical use case is if the data table contains samples that were sequenced, and there is
coverage data available

Approach 1

There should be a subdirectory named after the identifier of this track in the data table source data folder. For
each data item, this directory should contain a data file with the name equal to the primary key (see example).
The input files should not contain a header row

The Id is the identifier of this set of per-data-item genomic values i.e. the name of the subdirectory

Approach 2

This approach is more like the way the table based data files are processed. In this case multiple tracks can be
stored in the same input file. The Id corresponds to the column name instead of the directory name with the
directory details given in the FilePattern expression The name is the first match in the FilePattern expression

.

The block can contain the following keys:

Id Text (required). Identifier of this set of per-data-item genomic values - name of subdirectory or Identi-
fier of this set of per-data-item genomic values - name of the column in the matching files.

FilePattern Text. A glob (regular expression) containing a relative path to the file(s).

Name Text (required). Display name of the property.

MinVal Value (required). Default:0. Value used for lower extent of scales.

MaxVal Value (required). Value used for upper extent of scales.

BlockSizeMin Value (required). Default:1. Minimum block size used by the multiresolution summariser
(in bp).

BlockSizeMax Value (required). Maximum block size used by the multiresolution summariser (in bp).

ChannelColor Text. Colour used to display these tracks as a genome browser track. Formatted as
"rgb(r,g,b)".

Datatable property settings

An overview of the possible keys than can be defined for an individual property in the Properties block of the data
table settings.

Id Text (required). Identifier of the property, equal to the corresponding column header in the TAB-delimited source
file data.

DataType Text (required). Data type of the values in the property. Possible values:

• Text: text strings.

• Value: numerical values (integer of decimal; the distinction is made by the key DecimDigits). Absent
values can be coded by an empty string, “NA”, “None”, “NULL”, “null”, “inf” or “-”.

• HighPrecisionValue: same as Value, with higher precision.

36 Chapter 1. Contents

https://github.com/cggh/panoptes/tree/master/sampledata/datasets/Samples_and_Variants/datatables/samples/SampleSummary1

panoptes Documentation, Release 1.0-SNAPSHOT

• Boolean: Yes/No binary states. Possible values according to YAML:
y|Y|yes|Yes|YES|n|N|no|No|NO|true|True|TRUE|false|False|FALSE|on|On|ON|off|Off|OFF. Absent values
are coded by an empty string.

• GeoLongitude: longitude part of a geographical coordinates (in decimal degrees). Absent values are
coded by an empty string.

• GeoLattitude: latitude part of a geographical coordinates (in decimal degrees). Absent values are
coded by an empty string.

• Date: calendar dates, ISO formatted (i.e. YYYY-MM-DD). Absent values are coded by an empty string.

Name Text (required). Display name of the property.

Description Text. Brief description of the property. This will appear in hover tool tips and in the popup box if a user
clicks a property info button.

GroupId Text. Id of the Property group this property belongs to.

ExternalUrl Text. A url that should be opened when the user clicks on a value of this property. The url
should be formatted as a template, with {value} interpolated to the property value. For example:
http://www.ebi.ac.uk/ena/data/view/{value}.

IsCategorical Boolean. Instructs Panoptes to treat the property as a categorical variable. For example, a combo
box with the possible states is automatically shown in queries for this property. Categorical properties are
automatically indexed.

CategoryColors Block. Specifies display colours for the categorical states of this property. Each key in the block
links a possible value of the property to a color (example: Accepted: rgb(0,192,0)). The special value
other can be used to specify a color for all other property values that are not listed explicitly.

MaxColumnWidth Value. Specifies the maximum width (in pixels) used for the column representing this property
in a table view. Longer text will be abbreviated with ellipsis.

BarWidth Value. Draws a bar in the background of the table, indicating the value. Requires MinVal & MaxVal to be
defined(only applies if DataType is [’Value’, ‘HighPrecisionValue’]).

MinVal Value. Default:0. For Value types, upper extent of scale(only applies if DataType is [’Value’, ‘HighPrecision-
Value’]).

MaxVal Value. Default:1.0. For Value types, lower extent of scale(only applies if DataType is [’Value’, ‘HighPreci-
sionValue’]).

MaxLen Value. Default:0. If present used to specify the maximum size of the database column - otherwise it is
calculated.

DecimDigits Value. For Value types, specifies the number of decimal digits used to display the value(only applies if
DataType is [’Value’, ‘HighPrecisionValue’]).

MaxDecimDigits Value. (Not currently used) For Value types, specifies the number of decimal digits used to store
the value in the database(only applies if DataType is [’Value’, ‘HighPrecisionValue’]).

Index Boolean. Default:False. If set, instructs Panoptes to create an index for this property in the relational database.
For large datasets, this massively speeds up queries and sort commands based on this property.

Search Text. Default:None. Indicates that this field can be used for text search in the find data item wizard. Possible
values:

• None: .

• Match: only exact matched are searched for.

• StartPattern: searches all text that starts with the string typed by the user.

• Pattern: searches all text that contains the string typed by the user.

1.5. Data import settings 37

panoptes Documentation, Release 1.0-SNAPSHOT

Relation Block. Defines a many-to-one foreign relation to a parent data table. The parent table should contain a
property with the same name as the primary key property in the child table. The block can contain the following
keys:

TableId DatatableID (required). Data table ID of the relation parent table.

ForwardName Text (required). Default:belongs to. Display name of the relation from child to
parent.

ReverseName Text (required). Default:has. Display name of the relation from parent to child.

ReadData Boolean. Default:True. If set to false, this property will not be imported from the TAB-delimited source
file.

CanUpdate Boolean. Default:False. If set to true, this property can be modified by the user. (NOTE: under construc-
tion).

ShowInTable Boolean. If set, this property will appear by default in data table grids in the application.

ShowInBrowser Boolean. If set, this property will automatically appear as a track in the genome browser (only
applies if IsPositionOnGenome is specified in database settings).

BrowserDefaultVisible Boolean. Indicates that the track will activated by default in the genome browser (only
applies if ShowInBrowser is True).

BrowserShowOnTop Boolean. Indicates that the track will be shown in the top (non-scrolling) area of the genome
browser. In this case, it will always be visible (only applies if ShowInBrowser is True).

ChannelName

Text. Name of the genome browser track this property will be displayed in. Properties sharing the same
track name will be displayed in overlay (only applies if ShowInBrowser is True).

ChannelColor Text. Colour used to display this property in the genome browser. Formatted as "rgb(r,g,b)"
(only applies if ShowInBrowser is True).

ConnectLines Boolean. Indicate that the points will be connected with lines in the genome browser (only applies if
ShowInBrowser is True).

DefaultVisible Boolean. Default:True. .

Order Value. Default:-1. Only used for reference genome tracks.

SummaryValues Block. Instructs Panoptes to apply a multiresolution summary algorithm for fast display of this
property in the genome browser at any zoom level(only applies if ShowInBrowser is True). The block can
contain the following keys:

BlockSizeMin Value. Default:1. Minimum summary block size (in bp).

BlockSizeMax Value (required). Maximum summary block size (in bp).

ChannelColor Text. Colour of the channel, for numerical channels. Formatted as "rgb(r,g,b)".

MaxDensity Value. For categorical properties this set the scale for the summary track in rows/bp.
Defaults to 1/bp.

DataItemViews settings

The key Type for member of the data table settings key DataItemViews can have the following values:

Type Text (required). Identifier of the custom view type (can be Overview, PropertyGroup, FieldList, ItemMap,
PieChartMap) See DataItemViews settings for more details about defining custom data item views. Possible
values:

38 Chapter 1. Contents

panoptes Documentation, Release 1.0-SNAPSHOT

• Overview: Specifies the default data item view of Panoptes, including all fields.

• PropertyGroup: Displays all properties that are member of a specific property group.

• FieldList: Displays a selection of properties for the data item.

• ItemMap: Displays the data item as a pin on a geographical map. Requires the presence of properties
with data type GeoLongitude and GeoLattitude.

• PieChartMap: Defines a view that shows a set of pie charts on a geographic map (see example). This is
achieved by combining information from two data tables:

A locations data table. Each item in this data table defines a location where a pie chart is displayed. The
current data table (where the view is defined), which contains the sizes of the pies for each data item as
column values.

A set of properties of the current table is used to define pie sizes on all pie charts. For each pie and location combination there should be a property in the data table, containing the relative size of that specific pie..

• Template: A view that is defined by a template that is filled with row item properties.

Overview Specifies the default data item view of Panoptes, including all fields Name

Text (required). Display name of this view.

Template A view that is defined by a template that is filled with row item properties Content

Text (required). A handlebars template(only applies if Type is Template).

PropertyGroup Displays all properties that are member of a specific property group GroupId

Text (required). Identifier of the property group to display(only applies if Type is PropertyGroup).

FieldList Displays a selection of properties for the data item Introduction

Text. A static text that will be displayed on top of this view(only applies if Type is FieldList).

Fields PropertyIDList (required). Each item in this list specifies a property ID(only applies if Type is FieldList).

ItemMap Displays the data item as a pin on a geographical map. Requires the presence of properties with data type
GeoLongitude and GeoLattitude MapZoom

Value (required). Start zoom factor of the map (integer, minimum value of 0)(only applies if one of the
following is true:(Type is ItemMap)(Type is PieChartMap)).

PieChartMap Defines a view that shows a set of pie charts on a geographic map (see example). This is achieved by
combining information from two data tables:

• A locations data table. Each item in this data table defines a location where a pie chart is displayed.

• The current data table (where the view is defined), which contains the sizes of the pies for each data item as
column values.

A set of properties of the current table is used to define pie sizes on all pie charts. For each pie and location combination
there should be a property in the data table, containing the relative size of that specific pie PieChartSize

Value (required). Displayed size of the largest pie chart(only applies if Type is PieChartMap).

1.5. Data import settings 39

http://handlebarsjs.com/
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/datatables/variants/settings

panoptes Documentation, Release 1.0-SNAPSHOT

MapCenter Block (required). Specifies the map center in the start view(only applies if Type is PieChartMap). The
block can contain the following keys:

Longitude Value (required). Geographic longitude.

Lattitude Value (required). Geographic latitude.

DataType Text (required). Type of values used to create the pie chart(only applies if Type is PieChartMap). Possible
values:

• Fraction: .

PositionOffsetFraction Value (required). An offset between the pie chart location and the actual chart, used to
achieve a nice (ideally non-overlapping) view(only applies if Type is PieChartMap).

LocationDataTable Text (required). ID of the data table containing the locations (this table should have properties
with GeoLongitude and GeoLattitude data types)(only applies if Type is PieChartMap).

LocationSizeProperty Text (required). Property ID of the locations data table containing the size of the pie chart(only
applies if Type is PieChartMap).

LocationNameProperty Text (required). Property ID of the locations data table containing the name of the pie
chart(only applies if Type is PieChartMap).

ComponentColumns List (required). Enumerates all the pies displayed on the pie charts, and binds them to properties
of this data table (one for each combination of component x location)(only applies if Type is PieChartMap). The
block can contain the following keys:

Pattern Text (required). Property ID of the column providing the data. NOTE: the token {locid}
will be replaced by the primary key value of the records in the locations data table.

Name Text (required). Display name of the pie.

Color Text (required). Color of the pie. Format: rgb(r,g,b).

ResidualFractionName Text. Name of the pie representing residual fraction (only applicable if the fractions do not
sum up to 1)(only applies if Type is PieChartMap).

1.5.3 2D Datatable settings

This YAML file contains settings for a 2D data table. See also:

• Data import settings

• 2D data table source files

• Example file

Possible keys

NameSingle Text (required). Display name referring to data of an individual cell (single, without starting capital).

NamePlural Text (required). Display name referring to data of several cells (plural, without starting capital).

Description Text. Default:. A short description of this 2D data table. Note: this text may contain documentation links
(see Documentation source files).

ColumnDataTable Text (required). Identifier of the (1D) data table defining the columns of the matrix (In case of
genotype data: the variants). This links the 2D data table to the 1D data table containing the column information.

40 Chapter 1. Contents

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Genotypes/2D_datatables/genotypes/settings

panoptes Documentation, Release 1.0-SNAPSHOT

ColumnIndexField Text (required). The property ID in the ColumnDataTable data table that maps into the
ColumnIndexArray array in the HDF5 source file. ColumnIndexField and ColumnIndexArray
together establish the link between the column data table values, and the data present in the HDF5 source file.
Alternatively ColumnIndexArray can be omitted implying that the columns in HDF5 are in the same order
as ColumnIndexField sorted. Note that “AutoKey” can be used if your rows do not have Unique IDs.

ColumnIndexArray Text. 1D Array in the HDF5 source file that gives the value of ColumnIndexField for
each column. If this is omitted then it is assumed that the HDF5 columns are in the same order as the
ColumnDataTable data table, sorted by the ColumnIndexField property.

RowDataTable Text (required). Identifier of the (1D) data table defining the rows of the matrix (in case of genotype
data: the samples). This links the 2D data table to the 1D data table containing the row information.

RowIndexField Text (required). The property ID in the RowDataTable data table that maps into
RowIndexArray array in the HDF5 source file. RowIndexField and RowIndexArray together es-
tablish the link between the row data table values, and the data present in the HDF5 source file. Alternatively
RowIndexArray can be omitted implying that the rows in HDF5 are in the same order as RowIndexField
sorted. Note that “AutoKey” can be used if your rows do not have Unique IDs.

RowIndexArray Text. 1D Array in the HDF5 source file that gives the value of RowIndexField for each row. If
this is omitted then it is assumed that the HDF5 columns are in the same order as the RowDataTable data
table, sorted by the RowIndexField property.

FirstArrayDimension Text. Either ‘row’ or ‘column’ to indicate the first dimension in the HDF5 array. ‘column’
will generally perform better. Possible values:

• row: .

• column: .

SymlinkData Boolean. Default:False. If true then the HDF5 source file will not be copied but only symlinked. Note
that if your HDF5 doesn’t have small enough chunking (max few MB per chunk) then performance will suffer.
The default of False copies and rechunks the HDF5.

ShowInGenomeBrowser Block. If this key is present, the data will be visualised as a channel in the genome browser.
This requires that data table used as ColumnDataTable is defined as “IsPositionOnGenome” (see Data table
settings) This key contains the following subkeys, Either ‘Call’ or ‘AlleleDepth’ or both must be present. The
block can contain the following keys:

Call PropertyID. Reference to the 2D data table property that contains call information.

AlleleDepth PropertyID. Reference to the 2D data table property that contains depth information.

ExtraProperties PropertyIDList. A list of the extra 2D data table properties that are displayed in
the genotype channel. This will populate options for alpha and height control.

GenomeMaxViewportSizeX Value. Maximum size of the genome browser viewport (in bp) for which genotype calls
will be displayed.

Properties List (required). Contains a list of all properties defined for each cell of the 2D data table. The block can
contain the following keys:

Id Text (required). Identifier of the property, and name of the dataset in the HDF5 source file.

Name Text. Display name of the property.

Description Text. Short description of this property.

MinVal Value. For continuous properties the lower level at which values will be clipped on display.

MaxVal Value. For continuous properties the upper level at which values will be clipped on display.

1.5. Data import settings 41

panoptes Documentation, Release 1.0-SNAPSHOT

1.5.4 Workspace settings

This YAML file contains settings for a workspace. See also:

• Data import settings

• Add a new workspace to a dataset

• Example file

Possible keys

Name Text (required). Display name of the workspace.

1.5.5 Reference genome settings

This YAML file contains settings for the reference genome. See also:

• Data import settings

• Add reference genome annotation

• Add reference genome sequence

• Example file

Possible keys

GenomeBrowserDescr Text. Descriptive text that will be displayed in the genome browser section of the main page.

AnnotMaxViewPortSize Value. Maximum viewport (in bp) the genome browser can have in order to show the
genome annotation track.

RefSequenceSumm Boolean. If set, a summary track displaying the reference sequence with be included in the
genome browser.

Annotation Block. Directives for parsing the annotation file (annotation.gff). The block can contain the following
keys:

Format

Text. File format. Possible values GFF = Version 3 GFF file GTF = Version 2 GTF file

.

GeneFeature Text or List. Feature id(s) used to identify genes.

Example: [gene, pseudogene].

ExonFeature Text or List. Feature id(s) used to identify exons.

GeneNameAttribute Text. Attribute id used to identify gene names.

GeneNameSetAttribute Text or List. Attribute id(s) used to identify gene name sets.

Example: [Name,Alias].

GeneDescriptionAttribute Text or List. Attribute id(s) used to identify gene descriptions.

ExternalGeneLinks List. Each item in the list specifies a link for a gene to an external url. These links will show up
as buttons in the gene popup window. The block can contain the following keys:

42 Chapter 1. Contents

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/workspaces/workspace_1/settings
http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/refgenome/settings

panoptes Documentation, Release 1.0-SNAPSHOT

Url Text (required). Url for this link. This may include a token {Id} to refer to the unique gene
identifier. Example: https://www.google.co.uk/search?q={Id}.

Name Text (required). Display name for this external link.

1.5.6 Custom data settings

This YAML file contains settings for a custom data source. See also:

• Data import settings

• Add a custom data source to a workspace

• Example file

Possible keys

AutoScanProperties Boolean. If set, Panoptes will try to automatically obtain property definitions from the TAB-
delimited source data file.

PropertyGroups List. Each item in the list specifies a group of properties. It should contain two keys: “Id” repre-
senting a unique identifier for the group, and “Name” representing a display name. Property groups can be used
to combine sets of related properties into sections in the app.

Properties List (required) The data table yaml should contain a key “Properties”, which contains a list of descriptions
for all columns used in the app for this custom data table. See Datatable property settings for an overview of
the keys that can be used for each individual item in this list.

DataItemViews List. Definitions of custom views that will appear in the popup for an individual datatable item. The
views defined at the level of this custom data source will be added to the standard data item popup. Each item
in the list should contain the following key:

Type Text (required). Identifier of the custom view type (can be Overview, PropertyGroup, FieldList,
ItemMap, PieChartMap) See DataItemViews settings for more details about these custom views.

1.5. Data import settings 43

http://www.yaml.org/about.html
https://github.com/cggh/panoptes/blob/master/sampledata/datasets/Samples_and_Variants/workspaces/workspace_1/customdata/samples/SampleMetaData/settings

panoptes Documentation, Release 1.0-SNAPSHOT

44 Chapter 1. Contents

CHAPTER 2

License

Panoptes © Copyright 2014, CGGH <info@cggh.org>

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero
General Public License for more details.

A copy of the license is at http://opensource.org/licenses/AGPL-3.0

45

mailto:info@cggh.org
http://opensource.org/licenses/AGPL-3.0

	Contents
	Introduction
	Installation and deployment guide
	Loading data
	Source files structure
	Data import settings

	License

